

(Protected by US patent 8,666,218 and other patents pending)

DATASHEET

Return to the Webpage

Features

- Solid-State
- High speed
- Ultra-high reliability
- Low insertion loss
- Compact

Applications

- Optical blocking
- Configurable operation
- Instrumentation

The NanoSpeed™ i-series fiber optic switches are fast on-off shutter device uniquely featuring very low optical loss, fast response, and high optical power handling. The high extinction of 50dB is achieved using a patent pending intelligent feedback electro-optical bias control technology, that maintains the optimum performance against drift and environment variations. The NS fiber-optic switch is designed to meet the most demanding switching requirements of ultra-high reliability for undersea, space, continuous switching operation, and longevity over 25 years. The switch is bidirectional. It is well suited to replace acoustic modulator with advantages of low loss, low power consumption, and low cost.

The NS Series switch is controlled by 5V TTL signals with a specially designed electronic driver having performance optimized for various repetition rate. A wall pluggable DC power supply is accompanied with each devices.

Specifications

Parameter		Min	Typical	Max	Unit	
Central wavelength [1]		780		2300	nm	
Insertion Loss ^[2]	1900 ~2300nm		1.1	1.5	dB	
	1700 ~1900nm		1	1.4		
	1260~1650nm		0.8	1.2		
	960~1100nm		0.9	1.5		
	780~950nm		1.4	1.9		
Durability		1014			cycles	
On-Off Ratio [3]		50	50	55	dB	
PDL (SMF Switch only)			0.15	0.3	dB	
PMD (SMF Switch only)			0.1	0.3	ps	
ER (PMF Switch only)		18	25		dB	
IL Temperature Dependency			0.25	0.5	dB	
Return Loss		45	50	60	dB	
Response Time (Rise, Fall)			50	80	ns	
Fiber Type		SMF-28, Panda PM, or equivalent				
Driver Repeat Rate	60kHz driver	DC	60		kHz	
	300kHz driver	DC	300			
Optic power	Normal power		300		mW	
Handling [4]	High power			5	W	
Operating Temperature		-5		70	°C	
Storage Temperature		-40		85	°C	

Notes:

- [1]. Operation bandwidth is +/- 25nm approximately at 1550nm.
- [2]. Measured without connectors. For other wavelength, please contact us.
- [3]. Measured at 100kHz, which may be degraded at higher repeat rate.
- [4]. Defined at 1310nm/1550nm. For the shorter wavelength, the handling power may be reduced, please contact us for more information.

Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

Rev 02/08/25

(Protected by US patent 8,666,218 and other patents pending)

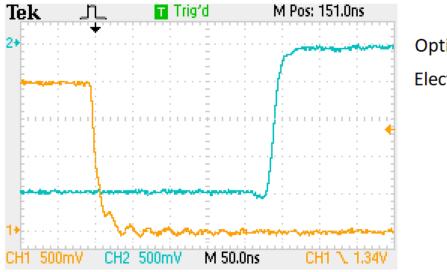

Mechanical Dimensions (mm)

Normal Power Version

High Power Version

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

(Protected by US patent 8,666,218 and other patents pending)


DATASHEET

Optical Path Driving Table

Optical Path	TTL Signal		
ON for normal-open or OFF for normal-dark	L (< 0.8V)		
OFF for normal-open or ON for normal-dark	H (> 3.5V)		

Driving Board Selection

Typical Speed Response Measurement

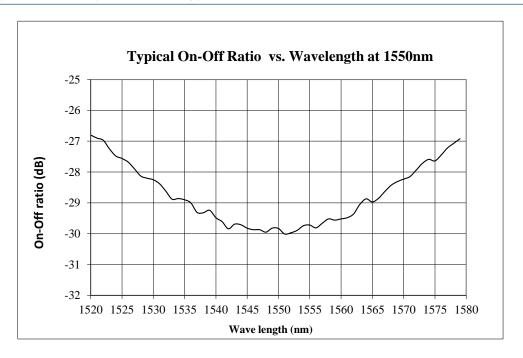
Optical: —

Electrical: -

© Photonwares Corporation

P +1 781-935-1200

E sales@photonwares.com


www.agiltron.com

(Protected by US patent 8,666,218 and other patents pending)

Bandwidth Response Curve (reference only)

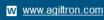
Ordering Information

Prefix	Туре	Wavelength [1]	Configuration [2]	Stage	Fiber Type	Fiber Cover	Fiber Length	Connector [3]
NSSI-	1x1 = 1 1x2 = 2 2x2 = 4	1060nm = 1 L Band = 2 1310nm = 3 1410nm = 4 1550nm = 5 980nm = 9 850nm = 8 780nm = 7 Special = 0	Low Power Normal Transparent = 11 Low Power Normal Opaque = 22 High Power Normal Transparent = 33 High Power Normal Opaque = 44	Single = 1 Dual = 2	SMF-28 = 1 HI1060 = 2 HI780 = 3 PM1550 = 5 PM980 = 9 PM850 = 8 Special = 0	Bare fiber = 1 0.9mm tube = 3 Special = 0	0.25m = 1 0.5m = 2 1.0 m = 3 Special = 0	None = 1 FC/PC = 2 FC/APC = 3 SC/PC = 4 SC/APC = 5 ST/PC = 6 LC/PC = 7 Duplex LC/PC = 8 LC/APC = 9 Special = 0

- [1]. Center wavelength. High power switch isn't available for the wavelength shorter than 960nm
- [2]. Only 1x1 has transparent and opaque selection, for 1x2 and 2x2 choose normal transparent
- [3]. Regular connectors cannot handle high power. Please contact us for Agiltron unique high power connectors.

© Photonwares Corporation

(Protected by US patent 8,666,218 and other patents pending)


DATASHEET

Operation Manual

- 1. Connect a control signal to the SMA connector on the PCB.
- 2. Attach the accompanied power supply (typically a wall-pluggable unit).
- 3. The device should then function properly.

Note: Do not alter device factory settings.

